

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека РФ

Молекулярно-генетические свойства

LISTERIA MONOCYTOGENES, ВЫДеленных в

Россиийской Федерации в 2016-2018гг

Борзенков В.Н., Асташкин Е.И., Светоч Э.А., Фурсова Н.К.

ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР ПРИКЛАДНОЙ МИКРОБИОЛОГИИ И БИОТЕХНОЛОГИИ
ОБОЛЕНСК
2019

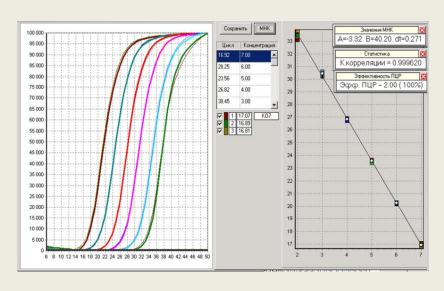
Центр мониторинга за листериозом в России

- » Приказ Роспотребнадзора
- × ot 01.12.2017 №1116
- " О совершенствовании системы
- **ж** мониторинга, лабораторной
- диагностики инфекционных и паразитарных оолезней и индикации ПБА в Российской Федерации"
- **ж** Во исполнение приказа в ФБУН ГНЦПМБ создан центр по мониторингу за листериозом.
- * Основными задачами которого являются: сбор и идентификация культур LISTERIA SSP., их углубленное молекулярно-генетическое исследование, анализ циркулируемых в России штаммов, паспортизация культур и их депонирование в коллекции.
- * Целью наших исследований, выполненных в рамках работы центра явилась характеристика молекулярно-генетических свойств изолятов *Listeria* monocytogenes, выделенных из пищевых продуктов и от людей в разных географических регионах Российской Федерации в 2016-2018 гг.


Бактериальные штаммы

- Х Изоляты *Listeria* spp.(n=91) выделены
- из мясных и рыбных полуфабрикатов
- **х** и от людей с различными диагнозами.
- Образцы были получены из Белгорода (n=3), Брянска (n=3), Вологды (n=50), Липецка (n=2), Москвы и Московской области (n=3), Орла (n=4), Ростова-на-Дону (n=9), Твери (n=14) и Ярославля (n=3) в 2016-2018 гг.
- Видовую идентификацию изолятов проводили
- ж бактериологическим методом
- * на масс-спектрометре MALDI-TOFBiotyper (Bruker, Германия).
- * серотипированием культур в реакции латекс-аггютинации на стекле с помощью латексной тест-системы «Listeria monocytogenes» (ФБУН ГНЦ ПМБ, Оболенск, Россия),
- * ПЦР анализом с использованием тест- систем для родовой и видовой идентификации «Listeria spp.», «Listeria monocytogenes», «Listeria innocua», «Listeria ivanovii», «Listeria seeligeri», «Listeria welshimeri» «Listeria grayi», (ФБУН ГНЦ ПМБ, Оболенск, Россия)

Методы, используемые при выделении и идентификации возбудителей листериоза 1. Бактериологические

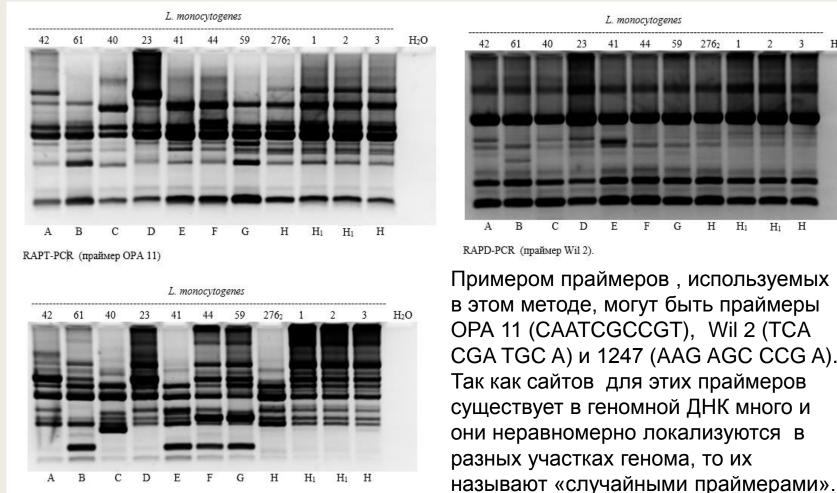

Питательный агар для выделения и культивирования Listeria spp., сухой. Предназначен для выделения возбудителя листериоза из пищевых продуктов при их бактериологическом исследовании, клинического патологического материала человека и животных, санитарных посевов из объектов внешней среды. (ФБУН ГНЦ ПМБ)

Набор реагентов для быстрой идентификации Listeria monocytogenes в реакции латекс-аггютинации, жидкий «Латексная тест-система Listeria monocytogenes» (ФБУН ГНЦ ПМБ)

2. Молекулярно - генетические

Тест-система для выявления и количественного определения ДНК Listeria monocytogenes в биологическом материале и объектах окружающей среды методом полимеразной цепной реакции (ПЦР) с гибридизационно-флуоресцентной детекцией «АмплиСенс□ Listeria monocytogenes-скрин/монитор-FL» (ИнтерЛабСервис, Москва).

Идентификация культур


В ходе исследования идентифицированы:

Регион выделения	L. monocytogenes	L. innocua	L. ivanovii	L. seligeriii	L. welshimerii
Белгород	3				
Брянск	3				
Вологда	38	10			2
Липецк	1		1	1	
Москва, обл.	3				
Орел	4				
Ростов-на-Дону	9				
Тверь	9	5			
Ярославль	3				
Всего	73	15	1	1	2

Внутривидовое типирование *L. monocytogenes*

- Приобретает большое значение при анализе вспышек листериоза, где, например, нужно сравнивать генетические линии культур, выделенных из клинического материала, объектов внешней среды, пищевых продуктов, с культурами, выделенными от заболевших людей и носителей с целью выявления источника инфекции и контактных лиц
- * Для внутривидового типирования L monocytogenes используют
- * Метод RAPD-PCR и мультилокусное сиквенс- типирование
- Основным достоинством метода RAPD-PCR является, то, что в этом методе используется генетическая информация практически всего генома, поэтому, при внутривидовом типировании с помощью этого метода можно выделить большое количество генетических линий, гораздо больше, чем при использовании мультилокусного (MLST) сиквенс-типирования в котором исследуются только аллели 7 генов.
- Главным недостатком метода RAPD-PCR является недостаточная повторяемость результатов и необходимость подбора праймеров для отдельных видов микроорганизмов. Все образцы, подлежащие исследованию, должны быть проанализированы в одном эксперименте RAPD-PCR. Значение этого метода значительно снижается при сравнении данных полученных в разное время и из разных лабораторий, а также проведении ретроспективного эпидемиологического анализа.

Результаты внутривидового типирования L. monocytogenes методом RAPD-PCR

RAPD-PCR (праймер 1247).

Примером праймеров, используемых в этом методе, могут быть праймеры OPA 11 (CAATCGCCGT), Wil 2 (TCA CGA TGC A) и 1247 (AAG AGC CCG A). Так как сайтов для этих праймеров существует в геномной ДНК много и они неравномерно локализуются в разных участках генома, то их

59

2762 1

Методом RAPD-PCR идентифицировано 12 RAPD-генотипов штаммов L. monocytogenes: A, B, C, D, E, F, G, H, I, J, K и L.

Внутривидовое типирование *L. monocytogenes*

Мультилокусное сиквенс-типирование

В XXI веке основным методом сравнительной характеристики изолятов листерий стало типирование

на основе мультилокусного секвенирования (MLST).

Для L. monocytogenes протокол MLST был разработан в 2005 г. исследователями ряда стран, входящих в Европейскую рабочую группу по листериозу. Протокол, получивший название Sequence-Based Typing (SBT), включает амплификацию и секвенирование фрагментов 7 генов

•

https://bigsdb.pasteur.fr/

База данных Института Пастера, Париж, Франция

Для типирования используются 7 генов «домашнего хозяйства»:

abcZ - ABC транспортер

bglA - бета-глюкозидаза

cat - каталаза

dapE - сукцинил диаминопимелат десукцинилаза

dat - D-аминокислот аминотрансфераза

ldh - L-лактат дегидрогеназа

lhkA - гистидин киназа

Listeria Sequence Typing

Протокол Sequence-Based Typing

По каждому гену (STB data base version 5,0) создана база последовательностей фрагментов.

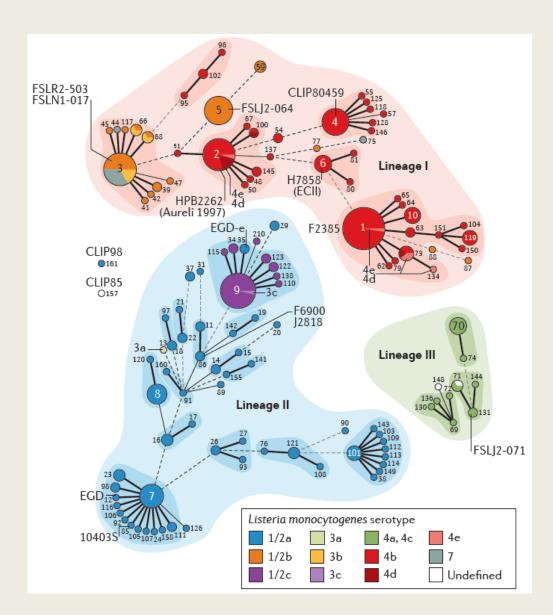
По версии создателей базы каждая

такая последовательность называется аллель. В базе данных представлены выявленные аллели (типы) для фрагментов 7 генов Количество последовательностей в базе пополняется по мере обнаружения и проверки новых вариантов. Сравнение с базой данных позволяет записать аллельный профиль штамма, перечисляя в установленном порядке номер аллели, с которым обнаружено 100% сходство для каждого из 7 генов.

Если сходство не составляет 100%, то аллель считается не определенным и вместо его номера предварительно записывается"0".После анализа данных представителями EWGLI аллелю может быть присвоен новый номер.

Совокулность номеров аллелей определяет сиквенс-тип(ST).

Протокол SBT активно используется в Европе, США, а также России для для сравнительной характеристики штаммов L. monocytogenes выделенных на территории Российской Федерации.


Сиквенс-типы штаммов *L. monocytogenes,* выделенных в разных регионах Российской Федерации

Strain	ID MLST	Дата	Город	Источник	abcZ	bglA	cat	dapE	dat	ldh	lhkA	ST	CC	Lineage	RAPD
BB-1	37680	2017	Яросл.	менингит	7	5	17	21	1	4	1	1455	451	II	H1
BB-2	37681	2017	Яросл.	менингит	7	5	17	21	1	4	1	1455	451	II	H1
BB-3	37682	2017	Яромл.	менингит	7	5	10	21	1	4	1	451	451	II	Н
OR- 513	37683	2016	Орл.	менингит	1	1	11	11	2	1	5	2	2	I	İ
OR- 517	37684	2016	Орл.	менингит	1	1	11	11	2	1	5	2	2	I	Ì
Bel-1	37685	2016	Белгор.	менингит	7	10	16	7	5	2	1	155	155	II	J
MO-ym	37686	2017	Моск.	менингит	3	1	1	1	3	1	3	1	1	I	M
MIB- 871	37687	2015	Москва	менингит	6	5	6	4	1	4	1	9	9	II	B1
MO-Ob		2016	Моск.	ангина	6	5	6	4	1	4	1	9	9	II	B1
Tve- 1185	37688	2017	Тверс.	Мясо	8	6	13	6	5	2	1	14	14	II	K
Tve- 12269	37689	2017	Тверс.	Рыба	2	1	11	3	3	1	7	5	5	I	L
Ros- 150-1	37679	2018	Ростов.	Мясо	11	9	12	3	3	1	210 New	1454	489	I	N

Сиквенс-типы штаммов *L. monocytogenes,* выделенных в Вологодской области

V12	37690	06.02.17	Vologda	Мясо птицы	7	6	8	8	6	37	1	121	121	II	A
V30	37691	2017	Vologda	Мясо	6	5	6	4	1	4	1	9	9	II	В
V32	37692	2017	Vologda	Птица	7	6	8	8	6	37	1	121	121	II	A
V40	37675	2017	Vologda	Рыба	7	5	8	87	6	37	1	1453	475	II	C
V41	37693	2017	Vologda	Рыба	7	15	15	8	6	14	9	101	101	П	E
V42	37694	2017	Vologda	Говядина	7	6	8	8	6	37	1	121	121	II	A
V44	37695	2017	Vologda	Котлеты	5	7	3	5	1	8	6	37	37	II	F
V59	37696	2017	Vologda	Говядина	7	7	10	4	5	24	1	403	403	U	G
V60-1	37697	2017	Vologda	Птица	6	5	6	4	1	4	1	9	9	II	В
V61	37698	2017	Vologda	Птица	6	5	6	4	1	4	1	9	9	II	В
V266-1	37699	2016	Vologda	Кровь	7	5	8	87	6	37	1	1453	475	II	C
V267	37700	2016	Vologda	Кровь	7	5	8	87	6	37	1	1453	475	II	C
V276-2	37701	2016	Vologda	Кровь	7	5	10	21	1	4	1	451	451	П	H
V299-1	37702	2016	Vologda	Околопл. воды	7	5	8	87	6	37	1	1453	475	II	C
V338	37678	09.12.16	Vologda	Птица	7	6	8	8	6	37	1	121	121	II	A
V357	37677	29.12.16	Vologda	Мясо птицы	7	6	8	8	6	37	1	121	121	II	A

Сиквенс-типы и генетические линии L. monocytogenes

Установлено, что изучаемые культуры *L. monocytogenes* принадлежат к 14 сиквенс-типам.

10 из которых -ST9, ST14, ST37, ST101, ST121, ST155, ST403, ST451 ST1453, ST1455, относятся к генетической линии листерий II.

4 сиквенс-типа-ST1, ST2, ST5 и ST1454, принадлежат к генетической линии I. Из этого перечня 3 сиквенс- типа - ST1453, ST1454 и ST1455 являются новыми, ранее отсутствующими в базе данных Института Пастера.

Анализ данных сиквенс- и RAPD-типирования штаммов L. monocytogenes

- Изоляты *L. monocytogenes,* выделенные от людей, принадлежали к 7 сиквенстипам: ST1, ST2, ST9, ST155, ST451, ST1453, ST1455.
- Изоляты *L. monocytogenes,* выделенные из продуктов питания принадлежали к 9 другим сиквенс-типам: ST5, ST9, ST14, ST37, ST101, ST121,ST 403, ST1453, ST1454.
- Следует отметить, что только два сиквенс –типа ST9 и ST1453 были определены у штаммов, выделенных и от людей и из продуктов питания
- Анализ представленности штаммов *L. monocytogenes*, выделенных в России, показал, что в базе данных Инстита Пастера были размещены только 6 изолятов сиквенс-типа ST1, а остальные сиквенс-типы, идентифицированные в данной работе, ранее исследователями из России не размещались.
- Установлена корреляция между идентифицированными сиквенс-типами и RAPD-генотипами:
- все изоляты ST121 принадлежали к RAPD-генотипу A; изоляты ST9 к RAPD-генотипу B;
- изоляты ST1453 к RAPD-генотипу C; изолят ST101 к RAPD-генотипу E;
- изолят ST37 к RAPD-генотипу F; изолят ST403 к RAPD-генотипу G; изоляты ST451 и родственного ST1455 к RAPD-генотипу H; изоляты ST2 к RAPD-генотипу I; изолят ST155 к RAPD-генотипу J изолят ST101 к RAPD-генотипу E; изолят ST14 к RAPD-генотипу K; изолят ST5 к RAPD-генотипу M; изолят ST101 к RAPD-генотипу E; изолят ST1454 –к RAPD-генотипу N.

Заключение

- 1. Результатом работы явилась идентификация и углубленная молекулярно-генетическая характеристика 93 штаммов *Listeria* spp., выделенных в 2016-2018 гг. в 9 регионах РФ.
- 2. Генетическое типирование штаммов патогенного для человека вида *L. monocytogenes* показало большое разнообразие сиквенс-типов, к которым принадлежат штаммы, выделенные как от людей, так и из продуктов питания.
- 3. Типирование листерий имеет большое значение для эпидемиологического анализа ситуации по листериозу.

СПАСИБО ЗА ВНИМАНИЕ

